Solution to keep engine in good technical condition

Clerk Cycle 1879 6 Day Cycle Four-stroke engine (Otto cycle) Six-stroke engine By type of ignition Compression-ignition engine Spark-ignition engine (commonly

Solution to keep engine in good technical condition reduce smoke TVR

Classification

Classification

There are several possible ways to classify internal combustion engines.

Reciprocating:

By number of strokes

Two-stroke engine

Clerk Cycle 1879 6
Day Cycle

Four-stroke engine (Otto cycle)
Six-stroke engine

By type of ignition

Compression-ignition engine
Spark-ignition engine (commonly found as gasoline engines)

By mechanical/thermodynamical cycle (these 2 cycles do not encompass all reciprocating engines, and are infrequently used):

Atkinson cycle
Miller cycle

Rotary:

Wankel engine

Continuous combustion:

Gas turbine
Jet engine

Rocket engine
Ramjet

The following jet engine types are also gas turbines types:

Turbojet
Turbofan
Turboprop



Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Otto cycle

Diesel cycle
Main article: Diesel cycle
P-v Diagram for the Ideal Diesel cycle. The cycle follows the numbers 1?4 in clockwise direction.

Most truck and automotive diesel engines use a cycle reminiscent of a four-stroke cycle, but with a compression heating ignition system, rather than needing a separate ignition system. This variation is called the diesel cycle. In the diesel cycle, diesel fuel is injected directly into the cylinder so that combustion occurs at constant pressure, as the piston moves.

Otto cycle: Otto cycle is the typical cycle for most of the cars internal combustion engines, that work using gasoline as a fuel. Otto cycle is exactly the same one that was described for the four-stroke engine. It consists of the same four major steps: Intake, compression, ignition and exhaust.

PV diagram for Otto cycle On the PV-diagram, 1?2: Intake: suction stroke 2?3: Isentropic Compression stroke 3?4: Heat addition stroke 4?5: Exhaust stroke (Isentropic expansion) 5?2: Heat rejection The distance between points 1?2 is the stroke of the engine. By dividing V2/V1, we get: r, where r is called the compression ratio of the engine.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Environmental issues of hybrids

The hybrid vehicle typically achieves greater fuel economy and lower emissions than conventional internal combustion engine vehicles (ICEVs), resulting in fewer emissions being generated. These savings are primarily achieved by three elements of a typical hybrid design:

Relying on both the engine and the electric motors for peak power needs, resulting in a smaller engine size more for average usage rather than peak power usage. A smaller engine can have less internal losses and lower weight.
Having significant battery storage capacity to store and reuse recaptured energy, especially in stop-and-go traffic typical of the city driving cycle.
Recapturing significant amounts of energy during braking that are normally wasted as heat. This regenerative braking reduces vehicle speed by converting some of its kinetic energy into electricity, depending upon the power rating of the motor/generator;
Other techniques that are not necessarily 'hybrid' features, but that are frequently found on hybrid vehicles include:

Using Atkinson cycle engines instead of Otto cycle engines for improved fuel economy.
Shutting down the engine during traffic stops or while coasting or during other idle periods.
Improving aerodynamics; (part of the reason that SUVs get such bad fuel economy is the drag on the car. A box shaped car or truck has to exert more force to move through the air causing more stress on the engine making it work harder). Improving the shape and aerodynamics of a car is a good way to help better the fuel economy and also improve vehicle handling at the same time.
Using low rolling resistance tires (tires were often made to give a quiet, smooth ride, high grip, etc., but efficiency was a lower priority). Tires cause mechanical drag, once again making the engine work harder, consuming more fuel. Hybrid cars may use special tires that are more inflated than regular tires and stiffer or by choice of carcass structure and rubber compound have lower rolling resistance while retaining acceptable grip, and so improving fuel economy whatever the power source.
Powering the a/c, power steering, and other auxiliary pumps electrically as and when needed; this reduces mechanical losses when compared with driving them continuously with traditional engine belts.
These features make a hybrid vehicle particularly efficient for city traffic where there are frequent stops, coasting and idling periods. In addition noise emissions are reduced, particularly at idling and low operating speeds, in comparison to conventional engine vehicles. For continuous high speed highway use these features are much less useful in reducing emissions.


Źródło: https://en.wikipedia.org/wiki/Hybrid_vehicle#Environmental_issues